Minimax upper bound of interval

Uniform distribution with unknown maximum, minimax squared difference loss


You need to estimate an unknown parameter $\theta$ belonging to the interval $[0,1]$. You are given the value of a random variable $\omega\sim \mathcal U(0,\vartheta)$, that is, uniformly distributed in the interval $[0,\vartheta]$.

The loss function for your estimate is the usual squared-difference loss: and you need to minimize the worst case expected loss (i.e. the minimax loss).

In the R code below:


    
decision_fxn <- function(omega) { # Calculate an estimate for theta in terms of omega ~ U(0, theta) to minimiax the worst-case loss theta_star <- 0; theta_star }
Scoring
Bronze: 0.1
Silver: 0.09
Gold: 0.08