You need to estimate an unknown parameter $\theta$ belonging to the interval $[0,1]$. You are given the value of a random variable $\omega\sim \mathcal U(0,\vartheta)$, that is, uniformly distributed in the interval $[0,\vartheta]$.
The loss function for your estimate is the usual squared-difference loss: and you need to minimize the worst case expected loss (i.e. the minimax loss).
In the R code below:
omega
is a number in the interval $[0,1]$ distributed according to $\mathcal U(0,\vartheta)$decision_fxn
should return your estimate for the unknown parameter $\vartheta\in [0,1]$